SNAI1 interacts with HDAC1 to control TGF‑β2‑induced epithelial‑mesenchymal transition in human lens epithelial cells

SNAI1 与 HDAC1 相互作用以控制 TGF-β2 诱导的人晶状体上皮细胞上皮间质转化

阅读:7
作者:Ning Gao #, Jingming Li #, Yazhou Qin, Yingna Wang, Qianyang Kang, Cheng Pei

Abstract

The opacity of the lens capsule after cataract surgery is caused by epithelial‑to‑mesenchymal transition (EMT) of lens epithelial cells. Snail family transcriptional repressor 1 (SNAI1) is a transcriptional repressor that recruits multiple chromatin enzymes including lysine‑specific histone demethylase 1A, histone deacetylase (HDAC) 1/2, polycomb repressive complex 2, euchromatic histone lysine methyltransferase 2 and suppressor of variegation 3‑9 homolog 1 to the E‑cadherin promoter, thereby suppressing E‑cadherin expression. However, the functional relationship between SNAI1 and HDAC in the induction of EMT in human lens epithelial cells (HLECs) is still unclear. Therefore, the objective of the present study was to explore the possible functional relationship between SNAI1 and HDAC1 in the induction of EMT in HLECs. In the present study, SNAI1 was found to be increased in HLECs during transforming growth factor‑β2 (TGF‑β2)‑induced EMT. Knockdown of SNAI1 by siRNA reversed TGF‑β2‑induced downregulation of E‑cadherin and upregulation of α‑Smooth Muscle Actin. Furthermore, SNAI1 was found to be associated with HDAC1 in the E‑cadherin promoter in TGF‑β2‑treated HLECs. Inhibition of HDAC by trichostatin A and suberoylanilide hydroxamic acid could prevent TGF‑β2‑induced EMT in HLECs. Collectively, SNAI1 interacted with HDAC1 to repress E‑cadherin in the TGF‑β2‑induced EMT in HLECs, suggesting that HDAC inhibitors may have potential therapeutic value for the prevention of EMT in HLECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。