Endothelial cells decode VEGF-mediated Ca2+ signaling patterns to produce distinct functional responses

内皮细胞解码 VEGF 介导的 Ca2+ 信号模式以产生不同的功能反应

阅读:5
作者:David P Noren, Wesley H Chou, Sung Hoon Lee, Amina A Qutub, Aryeh Warmflash, Daniel S Wagner, Aleksander S Popel, Andre Levchenko

Abstract

A single extracellular stimulus can promote diverse behaviors among isogenic cells by differentially regulated signaling networks. We examined Ca(2+) signaling in response to VEGF (vascular endothelial growth factor), a growth factor that can stimulate different behaviors in endothelial cells. We found that altering the amount of VEGF signaling in endothelial cells by stimulating them with different VEGF concentrations triggered distinct and mutually exclusive dynamic Ca(2+) signaling responses that correlated with different cellular behaviors. These behaviors were cell proliferation involving the transcription factor NFAT (nuclear factor of activated T cells) and cell migration involving MLCK (myosin light chain kinase). Further analysis suggested that this signal decoding was robust to the noisy nature of the signal input. Using probabilistic modeling, we captured both the stochastic and deterministic aspects of Ca(2+) signal decoding and accurately predicted cell responses in VEGF gradients, which we used to simulate different amounts of VEGF signaling. Ca(2+) signaling patterns associated with proliferation and migration were detected during angiogenesis in developing zebrafish.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。