LncRNA MALAT1 promotes neuropathic pain progression through the miR‑154‑5p/AQP9 axis in CCI rat models

LncRNA MALAT1 在 CCI 大鼠模型中通过 miR-154-5p/AQP9 轴促进神经性疼痛进展

阅读:6
作者:Jianping Wu, Chuanguang Wang, Haiyang Ding

Abstract

The present study investigated the role and molecular mechanism of long non‑coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript (MALAT)1 in neuropathic pain in rat chronic constriction injury (CCI) model. Reverse transcription‑quantitative PCR and western blot analysis were used to detect the expression levels of MALAT1, microRNA (miR)‑154‑5p and aquaporin (AQP)9 in spinal cord tissue and microglia of CCI rats. ELISA and pain behavioral assays were used to observe the effect of MALAT1 on neuropathic pain and neuroinflammation in model rats, and to verify its molecular mechanism through bioinformatics and luciferase experiments. The results of the present study identified that the expression levels of MALAT1 and AQP9 were upregulated, while miR‑154‑5p was downregulated in spinal cord tissue and microglia of CCI rats. MALAT1 knockdown in CCI model rats significantly induced the occurrence of neuropathic pain, while the upregulation of miR‑154‑5p could reverse this process. The present study also identified that miR‑154‑5p was the target gene of MALAT1, and AQP9 was the target gene of miR‑154‑5p. AQP9 knockdown promoted the occurrence of neuropathic pain. In conclusion, lncRNA MALAT1 promotes the progression of neuropathic pain in rats by reducing miR‑154‑5p and increasing AQP9. The MALAT1/miR‑154‑5p/AQP9 axis can be used as a new therapeutic target for neuropathic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。