Roxatidine inhibits fibrosis by inhibiting NF‑κB and MAPK signaling in macrophages sensing breast implant surface materials

罗沙替丁通过抑制巨噬细胞感知乳房植入物表面材料的 NF-κB 和 MAPK 信号传导来抑制纤维化

阅读:9
作者:Litong Ji, Tie Wang, Lining Tian, Hongjiang Song, Meizhuo Gao

Abstract

Capsular contracture is an important complication after silicone mammary implant surgery. Fibroblasts and macrophages play critical roles in the pathogenesis of capsular contracture, making these two cell types therapeutic targets. It has been reported that inhibiting histamine receptors results attenuates fibrosis, but the role of roxatidine (a histamine receptor 2 inhibitor) in preventing fibrosis caused by breast implant materials remains unknown. The aim of the present study was to assess the hypothesis that roxatidine might have a prophylactic effect in capsular contracture induced by implant material. Inflammation induced by breast implant materials was mimicked by co‑culturing macrophages or fibroblasts with these materials in vitro. Capsular contracture was modeled in mice by planting breast implant materials in a subcutaneous pocket. Roxatidine was added in the culture medium or administered to mice bearing breast implant materials. By co‑culturing macrophages or fibroblasts with common breast implant materials (micro‑textured or smooth breast implants), the present study demonstrated that macrophages respond to these materials by producing pro‑inflammatory cytokines, a process that was abolished by addition of roxatidine to the culture medium. Although fibroblasts did not respond to implant surface materials in the same way as macrophages, the conditioned media of macrophages induced proliferation of fibroblasts. Mechanistically, administration of roxatidine inhibited activation of NF‑κB and p38/mitogen‑activated protein kinase (MAPK) signaling in macrophages. Furthermore, treatment with roxatidine in implant‑bearing mice reduced serum concentrations of transforming growth factor‑β and the abundance of fibroblasts around the implant. The present study concluded that roxatidine plays an important role in preventing fibrosis by inhibiting activation of NF‑κB and p38/MAPK signaling in macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。