Up-regulation of miR-192-5p inhibits the ELAVL1/PI3Kδ axis and attenuates microvascular endothelial cell proliferation, migration and angiogenesis in diabetic retinopathy

miR-192-5p 上调可抑制 ELAVL1/PI3Kδ 轴并减弱糖尿病视网膜病变中的微血管内皮细胞增殖、迁移和血管生成

阅读:6
作者:Xiao-Lin Fu, Fu-Tao He, Mo-Han Li, Chun-Yan Fu, Jian-Zhi Chen

Background

Diabetic retinopathy (DR) is a common complication of diabetes mellitus that poses a threat to adults. MicroRNAs (miRNAs) play a key role in DR progression. However, the role and mechanism of miR-192-5p in DR remain unclear. We aimed to investigate the effect of miR-192-5p on cell proliferation, migration and angiogenesis in DR.

Conclusion

MiR-192-5p attenuates DR progression by targeting ELAVL1 and reducing PI3Kδ expression, suggesting a biomarker for the treatment of DR.

Methods

Expression of miR-192-5p, ELAV-like RNA binding protein 1 (ELAVL1) and phosphoinositide 3-kinase delta (PI3Kδ) in human retinal fibrovascular membrane (FVM) samples and human retinal microvascular endothelial cells (HRMECs) was assessed using RT-qPCR. ELAVL1 and PI3Kδ protein levels were evaluated by Western blot. RIP and dual luciferase reporter assays were performed to confirm the miR-192-5p/ELAVL1/PI3Kδ regulatory networks. Cell proliferation, migration and angiogenesis were assessed by CCK8, transwell and tube formation assays.

Results

MiR-192-5p was decreased in FVM samples from DR patients and high glucose (HG)-treated HRMECs. Functionally, overexpressed miR-192-5p inhibited cell proliferation, migration and angiogenesis in HG-treated HRMECs. Mechanically, miR-192-5p directly targeted ELAVL1 and decreased its expression. We further verified that ELAVL1 bound to PI3Kδ and maintained PI3Kδ mRNA stability. Rescue analysis demonstrated that the suppressive effects of HG-treated HRMECs caused by miR-192-5p up-regulation were overturned by overexpressed ELAVL1 or PI3Kδ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。