Background
Traditional Chinese Medicine (TCM) CFF-1 has been used in clinic for prostate cancer therapy in China. We reported before CFF-1 induced cell apoptosis via suppressing EGFR-related pathways, reminding us its potential role associated with antitumor immunity.
Conclusion
CFF-1 inhibited tumor growth and lung metastasis by blocking PD-1/PD-L1 to ameliorate T lymphocyte immune response through EGFR/JAK1/STAT3 pathway, suggesting that CFF-1 might be a promising treatment to resist tumor immunosuppression for prostate cancer patients.
Methods
Prostate-specific antigen (PSA) test and the functional assessment of cancer therapy-prostate (FACT-P) and karnosky performance status (KPS) questionnaires were carried out to evaluate patient' condition before and after therapy. Flow cytometry (FCM) was used for analyzing cell apoptosis, T lymphocyte subsets and cell cycle. Western blotting and Immunohistochemistry (IHC) were performed to measure protein expressions. The synergy of drug combination was assessed by calculating combination index (CI).
Purpose
The study was aimed to investigate the regulatory mechanism of CFF-1 on PD-L1/PD-1-mediated tumor immune escape.
Results
CFF-1 obviously decreased PSA and improved the quality of life in patients with advanced prostate cancer. PD-L1 was highly expressed in prostate cancer cells including LNCaP, 22Rv1, PC-3, DU145 and RM-1. PD-1/PD-L1 was upregulated in tumorigenesis and tumor progression of subcutaneous homograft mouse model with immune response, where CD3+ T cell subsets were declined. CFF-1 inhibited PD-L1 expression in prostate cancer cells in a time/dose-dependent manner and blocked tumor growth by suppressing PD-1/PD-L1 upregulation to promote the recovery of CD3+ T lymphocytes, especially CD4+ T cell subset, accompanied by the downregulation of CD4+ FOXP3+ T cell subset. CFF-1 also prolonged the survival and inhibited lung metastasis in tail vein prostate cancer mouse model while repressing PD-1/PD-L1. CFF-1 in combination with docetaxol (DTX) produced a synergistic effects by sensitizing the inhibitory effect of DTX on JAK1/STAT3 pathway targeting PD-L1 blockade.
