Design and Synthesis of Basic Selective Estrogen Receptor Degraders for Endocrine Therapy Resistant Breast Cancer

用于内分泌治疗耐药乳腺癌的碱性选择性雌激素受体降解剂的设计和合成

阅读:7
作者:Yunlong Lu, Lauren M Gutgesell, Rui Xiong, Jiong Zhao, Yangfeng Li, Carlo I Rosales, Michael Hollas, Zhengnan Shen, Jesse Gordon-Blake, Katherine Dye, Yueting Wang, Sue Lee, Hu Chen, Donghong He, Oleksii Dubrovyskyii, Huiping Zhao, Fei Huang, Amy W Lasek, Debra A Tonetti, Gregory R J Thatcher

Abstract

The clinical steroidal selective estrogen receptor (ER) degrader (SERD), fulvestrant, is effective in metastatic breast cancer, but limited by poor pharmacokinetics, prompting the development of orally bioavailable, nonsteroidal SERDs, currently in clinical trials. These trials address local breast cancer as well as peripheral metastases, but patients with brain metastases are generally excluded because of the lack of blood-brain barrier penetration. A novel family of benzothiophene SERDs with a basic amino side arm (B-SERDs) was synthesized. Proteasomal degradation of ERα was induced by B-SERDs that achieved the objectives of oral and brain bioavailability, while maintaining high affinity binding to ERα and both potency and efficacy comparable to fulvestrant in cell lines resistant to endocrine therapy or bearing ESR1 mutations. A novel 3-oxyazetidine side chain was designed, leading to 37d, a B-SERD that caused endocrine-resistant ER+ tumors to regress in a mouse orthotopic xenograft model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。