Sex-dependent regulation of mucin gene transcription and airway secretion and mechanics following intra-airway IL-13 in mice with conditional loss of club cell Creb1

棒状细胞 Creb1 条件性缺失的小鼠气道内注射 IL-13 后,粘蛋白基因转录和气道分泌及力学的性别依赖性调节

阅读:5
作者:Mariana Sponchiado #, Amy Fagan #, Luz Mata, Angelina L Bonilla, Pedro Trevizan-Baú, Sreekala Prabhakaran, Leah R Reznikov

Conclusion

These data highlight sex-specific regulation of club cell Creb1 on IL-13-mediated mucin hypersecretion and airway mechanics.

Methods

We tested the hypothesis that loss of club cell Creb1 mitigates the pro-mucin effects of IL-13. We challenged male and female mice with conditional loss of club cell Creb1 and wild type littermates with intra-airway IL-13 or vehicle. We also studied human "club cell-like" NCI-H322 cells.

Results

Loss of club cell Creb1 augmented IL-13-mediated increases in mRNA for the gel-forming mucins Muc5ac and Muc5b and prevented IL-13-mediated decreases in muscarinic 3 receptor (M3R) mRNA in male airways. In female airways, loss of club cell Creb1 reduced M3R mRNA and significantly blunted IL-13-mediated increases in purinergic receptor P2Y2 (P2ry2) mRNA but did not impact Muc5ac and Muc5b mRNA. Despite changes in mucins and secretion machinery, goblet cell density following cholinergic stimulation was not impacted by loss of club cell Creb1 in either sex. IL-13 treatment decreased basal airway resistance across sexes in mice with loss of club cell Creb1, whereas loss of club cell Creb1 augmented IL-13-mediated increases in airway elastance in response to methacholine. NCI-H322 cells displayed IL-13 signaling components, including IL-13Rα1 and IL-4Rα. Pharmacologic inhibition of CREB reduced IL-13Rα1 mRNA, whereas recombinant CREB decreased IL-4Rα mRNA. Application of IL-13 to NCI-H322 cells increased concentrations of cAMP in a delayed manner, thus linking IL-13 signaling to CREB signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。