Conclusions
We conclude that VPS15 regulates the distribution of the 100-300 nm Pil1p-containing organelles to the extracellular fraction required for fast endocytosis of vesicles carrying metabolic enzymes. This work provides the first evidence showing that Pil1p displayed unique distribution patterns in the intracellular and extracellular fractions. This work also demonstrates that endocytosis of vesicles is divided into a fast and a slow pathway. The fast pathway is the predominant pathway and is used by vesicles carrying metabolic enzymes. Cup-shaped Pil1p-containing structures are critical for the rapid endocytosis of vesicles into the cytoplasm. Significance: This work provides the first evidence showing that Pil1p displayed unique distribution patterns in the intracellular and extracellular fractions. This work also demonstrates that endocytosis of vesicles is divided into a fast and a slow pathway. The fast pathway is the predominant pathway and is used by vesicles carrying metabolic enzymes. Cup-shaped Pil1p-containing structures are critical for the rapid endocytosis of vesicles into the cytoplasm.
Results
Our results showed that vesicles carrying metabolic enzymes were endocytosed at a fast rate, whereas vesicles carrying the heat shock protein Ssa1p were endocytosed at a slow rate. The PI3K regulator Vps15p is critical for the fast internalisation of extracellular vesicles. VPS15 regulates the distribution of the 100-300 nm organelles that contain the major eisosome protein Pil1p to the extracellular fraction. These Pil1p-containing structures were purified and showed unique cup-shape with their centres deeper than the peripheries. In the absence of VPS15, PIL1 or when PIL1 was mutated, the 100-300 nm structures were not observed in the extracellular fraction and the rapid internalisation of vesicles was impaired. Conclusions: We conclude that VPS15 regulates the distribution of the 100-300 nm Pil1p-containing organelles to the extracellular fraction required for fast endocytosis of vesicles carrying metabolic enzymes. This work provides the first evidence showing that Pil1p displayed unique distribution patterns in the intracellular and extracellular fractions. This work also demonstrates that endocytosis of vesicles is divided into a fast and a slow pathway. The fast pathway is the predominant pathway and is used by vesicles carrying metabolic enzymes. Cup-shaped Pil1p-containing structures are critical for the rapid endocytosis of vesicles into the cytoplasm. Significance: This work provides the first evidence showing that Pil1p displayed unique distribution patterns in the intracellular and extracellular fractions. This work also demonstrates that endocytosis of vesicles is divided into a fast and a slow pathway. The fast pathway is the predominant pathway and is used by vesicles carrying metabolic enzymes. Cup-shaped Pil1p-containing structures are critical for the rapid endocytosis of vesicles into the cytoplasm.
Significance
This work provides the first evidence showing that Pil1p displayed unique distribution patterns in the intracellular and extracellular fractions. This work also demonstrates that endocytosis of vesicles is divided into a fast and a slow pathway. The fast pathway is the predominant pathway and is used by vesicles carrying metabolic enzymes. Cup-shaped Pil1p-containing structures are critical for the rapid endocytosis of vesicles into the cytoplasm.
