Conclusion
This study demonstrates that intra-articular injection of FGS is a potential strategy for OA prevention and treatment, even at an early stage of disease progression. This is a novel function of FGS and has promising future clinical applications.
Methods
Collagenase was used to establish an experimental mouse OA model (CIOA) with considerable synovitis. Then, FGS was intra-articular administered. The mRNA and protein levels of iNOS were analysed by real-time PCR and Western blotting in vitro. Immunohistochemical and immunofluorescence staining were used to measure the expression of F4/80, iNOS, Col2α1 and MMP13 in vivo. The levels of pro-inflammatory cytokines in FGS-treated M1 macrophage culture supernatants were analysed by flow cytometry.
Results
FGS attenuates synovial inflammation and delays the development of OA in CIOA mice. Further results demonstrate that FGS inhibits macrophage M1 polarization in vitro and in vivo, which subsequently decreases the secretion of IL-6 and TNF-α, in turn delaying cartilage and extracellular matrix (ECM) degradation and chondrocyte hypertrophy. FGS inhibits macrophage M1 polarization by partially downregulating miR-155 levels.
