The effects of Selenohomolanthionine supplementation on the rumen eukaryotic diversity of Shaanbei white cashmere wether goats

硒高羊毛硫氨酸对陕北白绒山羊瘤胃真核生物多样性的影响

阅读:6
作者:Longping Li, Lei Qu, Tuo Li

Abstract

Selenium (Se) is an important microelement for animal health. However, the knowledge about the effects of Se supplementation on rumen eukaryotic community remains less explored. In this study, the ruminal eukaryotic diversity in three months old Shaanbei white cashmere wether goats, with body weight (26.18 ± 2.71) kg, fed a basal diet [0.016 mg/kg Se dry matter (DM), control group (CG)] were compared to those animals given basal diet supplemented with different levels of organic Se in the form of Selenohomolanthionine (SeHLan), namely low Se group (LSE, 0.3 mg/kg DM), medium Se group (MSE, 0.6 mg/kg Se DM) and high Se group (HSE, 1.2 mg/kg DM) using 18S rRNA amplicon sequencing. Illumina sequencing generated 2,623,541 reads corresponding to 3123 operational taxonomic units (OTUs). Taxonomic analysis revealed that Eukaryota (77.95%) and Fungi (14.10%) were the dominant eukaryotic kingdom in all samples. The predominant rumen eukaryotic phylum was found to be Ciliophora (92.14%), while fungal phyla were dominated by Ascomycota (40.77%), Basidiomycota (23.77%), Mucoromycota (18.32%) and unidentified_Fungi (13.89%). The dominant eukaryotic genera were found to be Entodinium (55.44%), Ophryoscolex (10.51%) and Polyplastron (10.19%), while the fungal genera were dominanted by Mucor (15.39%), Pichia (9.88%), Aspergillu (8.24%), Malassezia (7.73%) and unidentified_Neocallimastigaceae (7.72%). The relative abundance of eukaryotic genera Ophryoscolex, Enoploplastron and fungal genus Mucor were found to differ significantly among the four treatment groups (P < 0.05). Moreover, Spearman correlation analysis revealed that the ciliate protozoa and fungi were negatively correlated with each other. The results of this study provided newer information about the effects of Se on rumen eukaryotic diversity patterns using 18s rRNA high-throughput sequencing technology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。