A three-microRNA signature identifies two subtypes of glioblastoma patients with different clinical outcomes

三种 microRNA 标记可识别具有不同临床结果的两种亚型胶质母细胞瘤患者

阅读:6
作者:Giovanna Marziali, Mariachiara Buccarelli, Alessandro Giuliani, Ramona Ilari, Sveva Grande, Alessandra Palma, Quintino G D'Alessandris, Maurizio Martini, Mauro Biffoni, Roberto Pallini, Lucia Ricci-Vitiani

Abstract

Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults, characterized by aggressive growth, limited response to therapy, and inexorable recurrence. Because of the extremely unfavorable prognosis of GBM, it is important to develop more effective diagnostic and therapeutic strategies based on biologically and clinically relevant patient stratification systems. Analyzing a collection of patient-derived GBM stem-like cells (GSCs) by gene expression profiling, nuclear magnetic resonance spectroscopy, and signal transduction pathway activation, we identified two GSC clusters characterized by different clinical features. Due to the widely documented role played by microRNAs (miRNAs) in the tumorigenesis process, in this study we explored whether these two GBM patient subtypes could also be discriminated by different miRNA signatures. Global miRNA expression pattern was analyzed by oblique principal component analysis and principal component analysis. By a combined inferential strategy on PCA results, we identified a reduced set of three miRNAs - miR-23a, miR-27a, and miR-9* (miR-9-3p) - able to discriminate the proneural- and mesenchymal-like GSC phenotypes as well as mesenchymal and proneural subtypes of primary GBM included in The Cancer Genome Atlas (TCGA) data set. Kaplan-Meier analysis showed a significant correlation between the selected miRNAs and overall survival in 429 GBM specimens from TCGA-identifying patients who had an unfavorable outcome. The survival prognostic capability of the three-miRNA signatures could have important implications for the understanding of the biology of GBM subtypes and could be useful in patient stratification to facilitate interpretation of results from clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。