pH-Responsive Redox Nanoparticles Protect SH-SY5Y Cells at Lowered pH in a Cellular Model of Parkinson's Disease

在帕金森病细胞模型中,pH 响应性氧化还原纳米粒子可在较低 pH 条件下保护 SH-SY5Y 细胞

阅读:5
作者:Monika Pichla, Grzegorz Bartosz, Ireneusz Stefaniuk, Izabela Sadowska-Bartosz

Abstract

The damage to SH-SY5Y cells by 6-hydroxydopamine (6-OHDA) is an established cellular model of Parkinson's disease (PD). Redox nanoparticles are a promising tool for therapy, including neurodegenerative diseases. As pH of the brain tissue at sites affected by PD is lowered down to 6.5, we studied the effect of pH-responsive redox nanoparticles (poly(ethylene glycol)-b-poly[4-(2,2,6,6-tetramethylpiperidine-1-oxyl)aminomethylstyrene]), which change their structure in a pH-dependent manner and become active below pH 7 (NRNPs pH), on the viability of SH-SY5Y cells treated with 6-OHDA at pH 6.5 and 7.4. Pretreatment of the cells with NRNPs pH (15-75 μM) prior to the 6-OHDA treatment increased their survival in a concentration-dependent manner at pH 6.5, but not at pH 7.4. Among several parameters studied (ATP and GSH content, the level of reactive oxygen species, mitochondrial potential, mitochondrial mass), only the mitochondrial mass was dose-dependently protected by NRNPs pH at pH 6.5, but not at pH 7.4. These results indicate that the action of NRNPs pH on mitochondria underlies their protective effect in this cellular model of PD. These results may have potential importance for future applications of NRNPs pH in preclinical and perhaps clinical studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。