A study of subunit selectivity, mechanism and site of action of the delta selective compound 2 (DS2) at human recombinant and rodent native GABA(A) receptors

δ 选择性化合物 2 (DS2) 对人类重组和啮齿动物天然 GABA(A) 受体的亚基选择性、作用机制和作用位点的研究

阅读:5
作者:M L Jensen, K A Wafford, A R Brown, D Belelli, J J Lambert, N R Mirza

Background and purpose

Most GABA(A) receptor subtypes comprise 2α, 2β and 1γ subunit, although for some isoforms, a δ replaces a γ-subunit. Extrasynaptic δ-GABA(A) receptors are important therapeutic targets, but there are few suitable pharmacological tools. We profiled DS2, the purported positive allosteric modulator (PAM) of δ-GABA(A) receptors to better understand subtype selectivity, mechanism/site of action and activity at native δ-GABA(A) receptors. Experimental approach: Subunit specificity of DS2 was determined using electrophysiological recordings of Xenopus laevis oocytes expressing human recombinant GABA(A) receptor isoforms. Effects of DS2 on GABA concentration-response curves were assessed to define mechanisms of action. Radioligand binding and electrophysiology utilising mutant receptors and pharmacology were used to define site of action. Using brain-slice electrophysiology, we assessed the influence of DS2 on thalamic inhibition in wild-type and δ(0/0) mice. Key

Purpose

Most GABA(A) receptor subtypes comprise 2α, 2β and 1γ subunit, although for some isoforms, a δ replaces a γ-subunit. Extrasynaptic δ-GABA(A) receptors are important therapeutic targets, but there are few suitable pharmacological tools. We profiled DS2, the purported positive allosteric modulator (PAM) of δ-GABA(A) receptors to better understand subtype selectivity, mechanism/site of action and activity at native δ-GABA(A) receptors. Experimental approach: Subunit specificity of DS2 was determined using electrophysiological recordings of Xenopus laevis oocytes expressing human recombinant GABA(A) receptor isoforms. Effects of DS2 on GABA concentration-response curves were assessed to define mechanisms of action. Radioligand binding and electrophysiology utilising mutant receptors and pharmacology were used to define site of action. Using brain-slice electrophysiology, we assessed the influence of DS2 on thalamic inhibition in wild-type and δ(0/0) mice. Key

Results

Actions of DS2 were primarily determined by the δ-subunit but were additionally influenced by the α, but not the β, subunit (α4/6βxδ > α1βxδ >> γ2-GABA(A) receptors > α4β3). For δ-GABA(A) receptors, DS2 enhanced maximum responses to GABA, with minimal influence on GABA potency. (iii) DS2 did not act via the orthosteric, or known modulatory sites on GABA(A) receptors. (iv) DS2 enhanced tonic currents of thalamocortical neurones from wild-type but not δ(0/0) mice. Conclusions and implications: DS2 is the first PAM selective for α4/6βxδ receptors, providing a novel tool to investigate extrasynaptic δ-GABA(A) receptors. The effects of DS2 are mediated by an unknown site leading to GABA(A) receptor isoform selectivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。