Silica Biomineralization with Lignin Involves Si-O-C Bonds That Stabilize Radicals

二氧化硅与木质素的生物矿化涉及稳定自由基的 Si-OC 键

阅读:9
作者:Srinath Palakurthy, Lothar Houben, Michael Elbaum, Rivka Elbaum

Abstract

Plants undergo substantial biomineralization of silicon, which is deposited primarily in cell walls as amorphous silica. The mineral formation could be moderated by the structure and chemistry of lignin, a polyphenol polymer that is a major constituent of the secondary cell wall. However, the reactions between lignin and silica have not yet been well elucidated. Here, we investigate silica deposition onto a lignin model compound. Polyphenyl propanoid was synthesized from coniferyl alcohol by oxidative coupling with peroxidase in the presence of acidic tetramethyl orthosilicate, a silicic acid precursor. Raman, Fourier transform infrared, and X-ray photoelectron spectroscopies detected changes in lignin formation in the presence of silicic acid. Bonds between the Si-O/Si-OH residues and phenoxyl radicals and lignin functional groups formed during the first 3 h of the reaction, while silica continued to form over 3 days. Thermal gravimetric analysis indicated that lignin yields increased in the presence of silicic acid, possibly via the stabilization of phenolic radicals. This, in turn, resulted in shorter stretches of the lignin polymer. Silica deposition initiated within a lignin matrix via the formation of covalent Si-O-C bonds. The silica nucleants grew into 2-5 nm particles, as observed via scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Additional silica precipitated into an extended gel. Collectively, our results demonstrate a reciprocal relation by which lignin polymerization catalyzes the formation of silica, and at the same time silicic acid enhances lignin polymerization and yield.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。