The Sesquiterpene Synthase PtTPS5 Produces (1 S,5 S,7 R,10 R)-Guaia-4(15)-en-11-ol and (1 S,7 R,10 R)-Guaia-4-en-11-ol in Oomycete-Infected Poplar Roots

倍半萜合酶 PtTPS5 在卵菌感染的杨树根中产生 (1 S,5 S,7 R,10 R)-愈创木-4(15)-烯-11-醇和 (1 S,7 R,10 R)-愈创木-4-烯-11-醇

阅读:7
作者:Nathalie D Lackus, Jennifer Morawetz, Houchao Xu, Jonathan Gershenzon, Jeroen S Dickschat, Tobias G Köllner

Abstract

Pathogen infection often leads to the enhanced formation of specialized plant metabolites that act as defensive barriers against microbial attackers. In this study, we investigated the formation of potential defense compounds in roots of the Western balsam poplar (Populus trichocarpa) upon infection with the generalist root pathogen Phytophthora cactorum (Oomycetes). P. cactorum infection led to an induced accumulation of terpenes, aromatic compounds, and fatty acids in poplar roots. Transcriptome analysis of uninfected and P. cactorum-infected roots revealed a terpene synthase gene PtTPS5 that was significantly induced upon pathogen infection. PtTPS5 had been previously reported as a sesquiterpene synthase producing two unidentified sesquiterpene alcohols as major products and hedycaryol as a minor product. Using heterologous expression in Escherichia coli, enzyme assays with deuterium-labeled substrates, and NMR analysis of reaction products, we could identify the major PtTPS5 products as (1S,5S,7R,10R)-guaia-4(15)-en-11-ol and (1S,7R,10R)-guaia-4-en-11-ol, with the former being a novel compound. The transcript accumulation of PtTPS5 in uninfected and P. cactorum-infected poplar roots matched the accumulation of (1S,5S,7R,10R)-guaia-4(15)-en-11-ol, (1S,7R,10R)-guaia-4-en-11-ol, and hedycaryol in this tissue, suggesting that PtTPS5 likely contributes to the pathogen-induced formation of these compounds in planta.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。