Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon

BK通道(KCa1.1)在豚鼠远端结肠电性K+分泌激活中的作用

阅读:6
作者:Jin Zhang, Susan T Halm, Dan R Halm

Abstract

Secretagogues acting at a variety of receptor types activate electrogenic K(+) secretion in guinea pig distal colon, often accompanied by Cl(-) secretion. Distinct blockers of K(Ca)1.1 (BK, Kcnma1), iberiotoxin (IbTx), and paxilline inhibited the negative short-circuit current (I(sc)) associated with K(+) secretion. Mucosal addition of IbTx inhibited epinephrine-activated I(sc) ((epi)I(sc)) and transepithelial conductance ((epi)G(t)) consistent with K(+) secretion occurring via apical membrane K(Ca)1.1. The concentration dependence of IbTx inhibition of (epi)I(sc) yielded an IC(50) of 193 nM, with a maximal inhibition of 51%. Similarly, IbTx inhibited (epi)G(t) with an IC(50) of 220 nM and maximal inhibition of 48%. Mucosally added paxilline (10 μM) inhibited (epi)I(sc) and (epi)G(t) by ∼50%. IbTx and paxilline also inhibited I(sc) activated by mucosal ATP, supporting apical K(Ca)1.1 as a requirement for this K(+) secretagogue. Responses to IbTx and paxilline indicated that a component of K(+) secretion occurred during activation of Cl(-) secretion by prostaglandin-E(2) and cholinergic stimulation. Analysis of K(Ca)1.1α mRNA expression in distal colonic epithelial cells indicated the presence of the ZERO splice variant and three splice variants for the COOH terminus. The presence of the regulatory β-subunits K(Ca)β1 and K(Ca)β4 also was demonstrated. Immunolocalization supported the presence of K(Ca)1.1α in apical and basolateral membranes of surface and crypt cells. Together these results support a cellular mechanism for electrogenic K(+) secretion involving apical membrane K(Ca)1.1 during activation by several secretagogue types, but the observed K(+) secretion likely required the activity of additional K(+) channel types in the apical membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。