MICAL1 facilitates breast cancer cell proliferation via ROS-sensitive ERK/cyclin D pathway

MICAL1 通过 ROS 敏感的 ERK/细胞周期蛋白 D 通路促进乳腺癌细胞增殖

阅读:7
作者:Wenjie Deng, Yueyuan Wang, Shuo Zhao, Yujie Zhang, Yan Chen, Xuyang Zhao, Lei Liu, Shixiu Sun, Lin Zhang, Bixing Ye, Jun Du

Abstract

Molecule interacting with CasL 1 (MICAL1) is a multidomain flavoprotein mono-oxygenase that strongly involves in cytoskeleton dynamics and cell oxidoreduction metabolism. Recently, results from our laboratory have shown that MICAL1 modulates reactive oxygen species (ROS) production, and the latter then activates phosphatidyl inositol 3-kinase (PI3K)/protein kinase B (Akt) signalling pathway which regulates breast cancer cell invasion. Herein, we performed this study to assess the involvement of MICAL1 in breast cancer cell proliferation and to explore the potential molecular mechanism. We noticed that depletion of MICAL1 markedly reduced cell proliferation in breast cancer cell line MCF-7 and T47D. This effect of MICAL1 on proliferation was independent of wnt/β-catenin and NF-κB pathways. Interestingly, depletion of MICAL1 significantly inhibited ROS production, decreased p-ERK expression and unfavourable for proliferative phenotype of breast cancer cells. Likewise, MICAL1 overexpression increased p-ERK level as well as p-ERK nucleus translocation. Moreover, we investigated the effect of MICAL1 on cell cycle-related proteins. MICAL1 positively regulated CDK4 and cyclin D expression, but not CDK2, CDK6, cyclin A and cyclin E. In addition, more expression of CDK4 and cyclin D by MICAL1 overexpression was blocked by PI3K/Akt inhibitor LY294002. LY294002 treatment also attenuated the increase in the p-ERK level in MICAL1-overexpressed breast cancer cells. Together, our results suggest that MICAL1 exhibits its effect on proliferation via maintaining cyclin D expression through ROS-sensitive PI3K/Akt/ERK signalling in breast cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。