Propofol alleviates spinal cord ischemia-reperfusion injury by preserving PI3K/AKT/GIT1 axis

丙泊酚通过保护 PI3K/AKT/GIT1 轴减轻脊髓缺血再灌注损伤

阅读:8
作者:Yilin Zhou, Yuyan Bai, Peisen Zhang, Peiqing Weng, Wenxi Xie

Abstract

Spinal cord ischemia-reperfusion injury (SCIRI) is a major contributor to neurological damage and mortality associated with spinal cord dysfunction. This study aims to explore the possible mechanism of Propofol and G-protein-coupled receptor-interacting protein 1 (GIT1) in regulating SCIRI in rat models. SCIRI rat models were established and injected with Propofol, over expression of GIT1 (OE-GIT1), or PI3K inhibitor (LY294002). The neurological function was assessed using Tarlov scoring system, and Hematoxylin & Eosin (H&E) staining was applied to observe morphology changes in spinal cord tissues. Cell apoptosis, blood-spinal cord barriers (BSCB) permeability, and inflammatory cytokines were determined by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, evans blue (EB) staining, and enzyme-linked immuno sorbent assay (ELISA), respectively. Reverse transcription-quantitative polymerase chain reaction and western blot were used to detect the expression levels of GIT1, endothelial nitric oxide synthase (eNOS), PI3K/AKT signal pathway and apoptosis-related proteins. SCIRI rats had decreased expressions of GIT1 and PI3K/AKT-related proteins, whose expressions can be elevated in response to Propofol treatment. LY294002 can also decrease GIT1 expression levels in SCIRI rats. Propofol can attenuate neurological dysfunction induced by SCIRI, decrease spinal cord tissue injury and BSCB permeability in addition to suppressing cell apoptosis and inflammatory cytokines, whereas further treatment by LY294002 can partially reverse the protective effect of Propofol on SCIRI. Propofol can activate PI3K/AKT signal pathway to increase GIT1 expression level, thus attenuating SCIRI in rat models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。