Naringenin relieves paclitaxel-induced pain by suppressing calcitonin gene-related peptide signalling and enhances the anti-tumour action of paclitaxel

柚皮素通过抑制降钙素基因相关肽信号传导缓解紫杉醇引起的疼痛并增强紫杉醇的抗肿瘤作用

阅读:6
作者:Chen Pan, Yuhao Xu, Zongsheng Jiang, Chengjiang Fan, Zhexi Chi, Yu Zhang, Mengmeng Miao, Yuxuan Ren, Ziyi Wu, Linbin Xu, Changqing Mei, Qingge Chen, Yang Xi, Xiaowei Chen

Background and purpose

Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. Experimental approach: Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. Key

Purpose

Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. Experimental approach: Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. Key

Results

Systemic administration of naringenin attenuated paclitaxel-induced pain in both sexes. Naringenin reduced paclitaxel-enhanced CGRP expression in DRGs and the spinal cord, and alleviated CGRP-induced pain in naïve mice of both sexes. Naringenin mitigated macrophage infiltration and reversed paclitaxel-elevated c-fos expression and DRG neuron excitability. Naringenin decreased spinal glial activation and NF-κB phosphorylation in both sexes but influenced microglial M1/M2 polarization only in females. Co-administration of naringenin with paclitaxel enhanced paclitaxel's anti-tumour effect, impeded by an apoptosis inhibitor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。