Inactivating Mutations in Exonuclease and Polymerase Domains in DNA Polymerase Delta Alter Sensitivities to Inhibitors of dNTP Synthesis

DNA 聚合酶 Delta 中的外切酶和聚合酶结构域的失活突变会改变对 dNTP 合成抑制剂的敏感性

阅读:5
作者:Jiaming Zhang, Deyin Hou, James Annis, Forough Sargolzaeiaval, Julia Appelbaum, Eishi Takahashi, George M Martin, Alan Herr, Junko Oshima

Abstract

POLD1 encodes the catalytic subunit of DNA polymerase delta (Polδ), the major lagging strand polymerase, which also participates in DNA repair. Mutations affecting the exonuclease domain increase the risk of various cancers, while mutations that change the polymerase active site cause a progeroid syndrome called mandibular hypoplasia, deafness, progeroid features, and lipodystrophy (MDPL) syndrome. We generated a set of catalytic subunit of human telomerase (hTERT)-immortalized human fibroblasts expressing wild-type or mutant POLD1 using the retroviral LXSN vector system. In the resulting cell lines, expression of endogenous POLD1 was suppressed in favor of the recombinant POLD1. The siRNA screening of DNA damage-related genes revealed that fibroblasts expressing D316H and S605del POLD1 were more sensitive to knockdowns of ribonuclease reductase (RNR) components, RRM1 and RRM2 in the presence of hydroxyurea (HU), an RNR inhibitor. On the contrary, SAMHD1 siRNA, which increases the concentration of dNTPs, increased growth of wild type, D316H, and S605del POLD1 fibroblasts. Hypersensitivity to dNTP synthesis inhibition in POLD1 mutant lines was confirmed using gemcitabine. Our finding is consistent with the notion that reduced dNTP concentration negatively affects the cell growth of hTERT fibroblasts expressing exonuclease and polymerase mutant POLD1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。