Background
Glioma is a common malignant tumor. The
Conclusion
NCK1-AS1 could increase drug resistance of glioma cells to TMZ by modulating miR-137/TRIM24 pathway.
Methods
The fresh and recurrent glioma tissues and peritumoral brain edema (PTBE) were collected from the same patient. U251 and A172 cells were treated with TMZ to screen TMZ-resistant cells. The expression levels of NCK1-AS1, miR-137, or TRIM24 were detected by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, in situ hybridization (ISH), or RNA pull-down assay. Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazoliumbromide (MTT) assay. In addition, the relationship between NCK1-AS1 and miR-137 or TRIM24 and miR-137 was confirmed by dual luciferase activity assay.
Results
NCK1-AS1 expression was increased in regular and recurrent glioma tissues and TMZ-resistant cells. Cell viability was increased in TMZ-resistant cells, and the IC50 of TMZ also increased in TMZ resistant cells. However, knockdown of NCK1-AS1 inhibited these increases. Moreover, suppression of NCK1-AS1 increased miR-137 expression, whereas overexpression of miR-137 decreased TRIM24 expression. Then, expression of miR-137 alleviated the NCK1-AS1 overexpression-induced increased expression of TRIM24. In addition, the decreases of cell viability and IC50 induced by NCK1-AS1 knockdown were reversed after adding TRIM24 in U251/TMZ and A172/TMZ cells.
