Downregulation of glycine decarboxylase enhanced cofilin-mediated migration in hepatocellular carcinoma cells

甘氨酸脱羧酶的下调增强了肝癌细胞中肌动蛋白丝切蛋白介导的迁移

阅读:11
作者:Hao Zhuang, Qiang Li, Xinran Zhang, Xuda Ma, Zun Wang, Yun Liu, Xianfu Yi, Ruibing Chen, Feng Han, Ning Zhang, Yongmei Li

Abstract

Metabolic reprogramming is a hallmark of cancer. Glycine decarboxylase (GLDC), an oxidoreductase, plays an important role in amino acid metabolism. While GLDC promotes tumor initiation and proliferation in non-small cell lung cancer and glioma and it was reported as a putative tumor suppressor gene in gastric cancer, the role of GLDC in hepatocellular carcinoma (HCC) is unknown. In the current study, microarray-based analysis suggested that GLDC expression was low in highly malignant HCC cell lines, and clinicopathological analysis revealed a decrease in GLDC in HCC tumor samples. While the knockdown of GLDC enhanced cancer cell migration and invasion, GLDC overexpression inhibited them. Mechanistic studies revealed that GLDC knockdown increased the levels of reactive oxygen species (ROS) and decreased the ratio of glutathione/oxidized glutathione (GSH/GSSG), which in turn dampened the ubiquitination of cofilin, a key regulator of actin polymerization. Consequently, the protein level of cofilin was elevated, which accounted for the increase in cell migration. The overexpression of GLDC reversed the phenotype. Treatment with N-acetyl-L-cysteine decreased the protein level of cofilin while treatment with H2O2 increased it, further confirming the role of ROS in regulating cofilin degradation. In a tumor xenographic transplant nude mouse model, the knockdown of GLDC promoted intrahepatic metastasis of HCC while GLDC overexpression inhibited it. Our data indicate that GLDC downregulation decreases ROS-mediated ubiquitination of cofilin to enhance HCC progression and intrahepatic metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。