TDAG51-Deficiency Podocytes are Protected from High-Glucose-Induced Damage Through Nrf2 Activation via the AKT-GSK-3β Pathway

通过 AKT-GSK-3β 通路激活 Nrf2,保护缺乏 TDAG51 的足细胞免受高糖诱导的损伤

阅读:9
作者:Chuntian Liu, Yanling Li, Xiaojuan Wang

Abstract

T cell death-associated gene 51 (TDAG51) has been implicated in the development of various pathological conditions. However, whether TDAG51 plays a role in diabetic renal disease remains unknown. The current work investigated the possible function of TDAG51 in diabetic renal disease using high-glucose (HG)-stimulated podocytes in vitro. The elevation of TDAG51 was observed in podocytes in response to HG exposure and the glomeruli of diabetic mice. The siRNAs targeting TDAG51 were applied to deplete TDAG51 in HG-stimulated podocytes. Crucially, TDAG51 deficiency was sufficient to decrease the apoptosis, oxidative stress, and inflammation caused by HG. Mechanically, the inhibition of TDAG51 was capable of enhancing the activation of nuclear factor E2-related factor 2 (Nrf2) associated with the upregulation of AKT-glycogen synthase kinase-3β (GSK-3β) pathway. The reduction of AKT abolished the activation of Nrf2 elicited by TDAG51 deficiency. Additionally, the reduction of Nrf2 diminished the anti-HG injury effect elicited by TDAG51 deficiency. Overall, these data demonstrate that TDAG51 deficiency defends against HG-induced podocyte damage through Nrf2 activation by regulating AKT-GSK-3β pathway. This study suggests that TDAG1 may have a potential role in diabetic renal disease by affecting HG-induced podocyte damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。