Functional and molecular characterization of transmembrane intracellular pH regulators in human dental pulp stem cells

人类牙髓干细胞中跨膜细胞内 pH 调节剂的功能和分子特征

阅读:5
作者:Gunng-Shinng Chen, Shiao-Pieng Lee, Shu-Fu Huang, Shih-Chi Chao, Chung-Yi Chang, Gwo-Jang Wu, Chung-Hsing Li, Shih-Hurng Loh

Conclusions

We demonstrate for the first time that resting pHi is significantly higher than 7.2 and meditates functionally by two Na+-dependent acid extruders (NHE and NBC), two Cl--dependent acid loaders (CHE and AE) and one Na+-independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry.

Objective

Homeostasis of intracellular pH (pHi) plays vital roles in many cell functions, such as proliferation, apoptosis, differentiation and metastasis. Thus far, Na+-H+ exchanger (NHE), Na+-HCO3- co-transporter (NBC), Cl-/HCO3- exchanger (AE) and Cl-/OH- exchanger (CHE) have been identified to co-regulate pHi homeostasis. However, functional and biological pHi-regulators in human dental pulp stem cells (hDPSCs) have yet to be identified. Design: Microspectrofluorimetry technique with pH-sensitive fluorescent dye, BCECF, was used to detect pHi changes. NH4Cl and Na+-acetate pre-pulse were used to induce intracellular acidosis and alkalosis, respectively. Isoforms of pHi-regulators were detected by Western blot technique.

Results

The resting pHi was no significant difference between that in HEPES-buffered (nominal HCO3--free) solution or CO2/HCO3-buffered system (7.42 and 7.46, respectively). The pHi recovery following the induced-intracellular acidosis was blocked completely by removing [Na+]o, while only slowed (-63%) by adding HOE694 (a NHE1 specific inhibitor) in HEPES-buffered solution. The pHi recovery was inhibited entirely by removing [Na+]o, while adding HOE 694 pulse DIDS (an anion-transporter inhibitor) only slowed (-55%) the acid extrusion. Both in HEPES-buffered and CO2/HCO3-buffered system solution, the pHi recovery after induced-intracellular alkalosis was entirely blocked by removing [Cl-]o. Western blot analysis showed the isoforms of pHi regulators, including NHE1/2, NBCe1/n1, AE1/2/3/4 and CHE in the hDPSCs. Conclusions: We demonstrate for the first time that resting pHi is significantly higher than 7.2 and meditates functionally by two Na+-dependent acid extruders (NHE and NBC), two Cl--dependent acid loaders (CHE and AE) and one Na+-independent acid extruder(s) in hDPSCs. These findings provide novel insight for basic and clinical treatment of dentistry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。