H(+)/Cl(‑) exchange transporter 7 promotes lysosomal acidification‑mediated autophagy in mouse cardiomyocytes

H(+)/Cl(-)交换转运蛋白7促进小鼠心肌细胞溶酶体酸化介导的自噬

阅读:6
作者:Jiezhi Lin #, Jinyu Wei #, Yanling Lv, Xingyue Zhang, Ruo Fan Yi, Chen Dai, Qiong Zhang, Jiezhi Jia, Dongxia Zhang, Yuesheng Huang

Abstract

Autophagy protects cardiomyocytes in various pathological and physiological conditions; however, the molecular mechanisms underlying its influence and the promotion of autophagic clearance are not completely understood. The present study aimed to explore the role of H(+)/Cl(‑) exchange transporter 7 (CLC‑7) in cardiomyocyte autophagy. In this study, rapamycin was used to induce autophagy in mouse cardiomyocytes, and the changes in CLC‑7 were investigated. The expression levels of CLC‑7 and autophagy‑related proteins, such as microtubule associated protein 1 light chain 3, autophagy related 5 and Beclin 1, were detected using western blotting or immunofluorescence. Autolysosomes were observed and analyzed using transmission electron microscopy and immunofluorescence following CLC‑7 silencing with small interfering RNAs. Cellular viability was assessed using Cell Counting Kit‑8 and lactate dehydrogenase assays. Lysosomal acidification was measured using an acidification indicator. Increased CLC‑7 co‑localization with lysosomes was identified during autophagy. CLC‑7 knockdown weakened the acidification of lysosomes, which are the terminal compartments of autophagy flux, and consequently impaired autophagy flux, ultimately resulting in cell injury. Collectively, the present study demonstrated that in cardiomyocytes, CLC‑7 may contribute to autophagy via regulation of lysosomal acidification. These findings provide novel insights into the role of CLC‑7 in autophagy and cytoprotection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。