1,7‑Bis(4‑hydroxy‑3‑methoxyphenyl)‑1,4,6‑heptatrien‑3‑one alleviates lipopolysaccharide‑induced inflammation by targeting NF‑κB translocation in murine macrophages and it interacts with MD2 in silico

1,7-双(4-羟基-3-甲氧基苯基)-1,4,6-庚三烯-3-酮通过靶向小鼠巨噬细胞中的 NF-κB 易位缓解脂多糖诱导的炎症,并与 MD2 相互作用

阅读:7
作者:Chutima Jansakun, Wanatsanan Chulrik, Waraluck Chaichompoo, Pathumwadee Yotmanee, Kanokporn Lehboon, Wilanee Chunglok, Apsorn Sattayakhom, Poonsit Hiransai, Kornyok Kamdee, Tanyarath Utaipan, Apichart Suksamrarn, Warangkana Chunglok

Abstract

Trienones are curcuminoid analogues and are minor constituents in the rhizomes of numerous Curcuma plant species. Studies investigating the biological activities of trienones, particularly their anti‑inflammatory activities, are limited. In the present study, the trienone 1,7‑bis(4‑hydroxy‑3‑methoxyphenyl)‑1,4,6‑heptatrien‑3‑one (HMPH) was structurally modified from curcumin using a novel and concise method. HMPH was shown to exhibit potential anti‑inflammatory effects on lipopolysaccharide (LPS)‑activated RAW264.7 macrophages. Furthermore, LPS‑induced nitric oxide secretion in RAW264.7 cells was markedly and dose‑dependently inhibited by HMPH; in addition, HMPH had a greater efficacy compared with curcumin. This inhibition was accompanied by the suppression of inducible nitric oxide synthase and cyclooxygenase‑2 expression, as well as pro‑inflammatory cytokine secretion. To elucidate the molecular mechanism underlying the anti‑inflammatory effects of HMPH, the effects of this compound on nuclear factor‑κB (NF‑κB) translocation were assessed. HMPH significantly inhibited the translocation of p65 NF‑κB into the nucleus to a greater extent than curcumin, thus indicating that HMPH has more potent anti‑inflammatory activity than curcumin. In addition, an in silico modelling study revealed that HMPH possessed stronger binding energy to myeloid differentiation factor 2 (MD2) compared with that of curcumin, and indicated that the anti‑inflammatory effects of HMPH may be through upstream inhibition of the inflammatory pathway. In conclusion, HMPH may be considered a promising compound for reducing inflammation via targeting p65 NF‑κB translocation and interfering with MD2 binding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。