The Potential of Narrow-Band Imaging as a Novel Light Source for Photodynamic Therapy for Superficial Cancers via Endoscopes

窄带成像作为内窥镜光动力治疗浅表癌症新光源的潜力

阅读:11
作者:Yusuke Nakada, Takaaki Sugihara, Maria Tanaka, Wataru Hamamoto, Tsutomu Kanda, Takuki Sakaguchi, Hiroki Kurumi, Takumi Onoyama, Yuichiro Ikebuchi, Tomoaki Takata, Hajime Isomoto, Naoyuki Yamaguchi

Background

Photodynamic therapy (PDT) has advanced through the utilization of photosensitizers and specific-wavelength light (≥ 600 nm). However, the widespread adoption of PDT is still impeded by high equipment costs and stringent laser safety requirements. Porphyrins, crucial in PDT, have another absorbance peak of blue light (λ = 380 - 500 nm). This peak corresponds to the wavelength of narrow-band imaging (NBI) (λ = 390 - 445 nm), an image-enhancement technology integrated into endoscopes by Olympus Medical Systems. The study aimed to investigate the potential of widely adopted NBI as a PDT light source for superficial cancers via endoscopes.

Conclusions

NBI is a promising PDT light source for superficial cancers via endoscopes.

Methods

Esophageal and biliary cancers were selected for investigation. Human esophageal cancer cell lines (KYSE30, KYSE70, KYSE170) and cholangiocarcinoma cell lines (HuCCT-1, KKU-213) were subjected to verteporfin-mediated PDT under NBI light (λ = 390 - 445 nm). Assessments included spectrometry, crystal violet staining, and fluorescein imaging of singlet oxygen generation and apoptosis.

Results

Verteporfin exhibited a peak (λ = 436 nm) consistent with the NBI spectrum, suggesting compatibility with NBI light. NBI light significantly inhibited the growth of esophageal and biliary cancer cells. The half-maximum effective concentration (EC50) values (5 J/cm2) for KYSE30, KYSE70, KYSE170, HuCCT-1, and KKU-213 were calculated as 2.78 ± 0.37µM, 1.76 ± 1.20 µM, 0.77 ± 0.16 µM, 0.65 ± 0.18 µM, and 0.32 ± 0.04 µM, respectively. Verteporfin accumulation in mitochondria, coupled with singlet oxygen generation and observed apoptotic changes, suggests effective PDT under NBI light. Conclusions: NBI is a promising PDT light source for superficial cancers via endoscopes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。