Myeloid differential protein-2 inhibition improves diabetic cardiomyopathy via p38MAPK inhibition and AMPK pathway activation

髓系差异蛋白-2抑制通过抑制 p38MAPK 和激活 AMPK 通路改善糖尿病心肌病

阅读:5
作者:Jianchang Qian, Fei Zhuang, Yujing Chen, Xinrong Fan, Jun Wang, Zhe Wang, Yi Wang, Mingjiang Xu, Aleksandr V Samorodov, Valentin N Pavlov, Guang Liang

Abstract

Myeloid differential protein-2 (MD2) has been shown to play a critical role in the progression of diabetic cardiomyopathy (DCM). This study aims to explore the non-inflammatory mechanisms mediated by MD2 in DCM and to test the therapeutic effects of MD2 inhibitor C30 on DCM. Streptozotocin (STZ) was used to construct DCM model in wild-type and MD2 knockout mice. The collected heart samples were subjected to RNA-sequencing assay. Gene set enrichment analysis of the RNA-seq data indicated that MD2 knockout was associated with energy metabolism pathways in diabetic mouse heart. Further data showed that AMPK pathway was impaired under high glucose condition, which was mediated by p38MAPK activation. MD2 knockout or pharmacological inhibitor C30 completely rescued AMPK signaling through p38MAPK inhibition. Importantly, C30 treatment significantly prevented myocardial damage and dysfunction in T1DM mice evidenced by improved cardiac function and reduced cardiomyocyte apoptosis and cardiac fibrosis. Furthermore, the therapeutic effect of C30 on DCM was correlated to p38MAPK inhibition and AMPK pathway activation in vivo and in vitro. In conclusion, MD2 inhibition exhibits therapeutic effects on DCM through p38MAPK inhibition and AMPK activation, which enables MD2 a promising target for DCM treatment by suppressing metaflammation and improving cardiac metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。