Background and purpose
The ethacrynic acid derivative, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) is considered to be a specific and potent inhibitor of volume-regulated anion channels (VRACs). In the CNS, DCPIB was shown to be neuroprotective through mechanisms principally associated to its action on VRACs. We hypothesized that DCPIB could also regulate the activity of other astroglial channels involved in cell volume homeostasis. Experimental approach: Experiments were performed in rat cortical astrocytes in primary culture and in hippocampal astrocytes in situ. The effect of DCPIB was evaluated by patch-clamp electrophysiology and immunocytochemical techniques.
Purpose
The ethacrynic acid derivative, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) is considered to be a specific and potent inhibitor of volume-regulated anion channels (VRACs). In the CNS, DCPIB was shown to be neuroprotective through mechanisms principally associated to its action on VRACs. We hypothesized that DCPIB could also regulate the activity of other astroglial channels involved in cell volume homeostasis. Experimental approach: Experiments were performed in rat cortical astrocytes in primary culture and in hippocampal astrocytes in situ. The effect of DCPIB was evaluated by patch-clamp electrophysiology and immunocytochemical techniques.
Results
In cultured astrocytes, DCPIB promoted the activation of a K(+) conductance mediated by two-pore-domain K(+) (K(2P) ) channels. The DCPIB effect occluded that of arachidonic acid, which activates K(2P) channels K(2P) 2.1 (TREK-1) and K(2P) 10.1 (TREK-2) in cultured astrocytes. Immunocytochemical analysis suggests that cultured astrocytes express K(2P) 2.1 and K(2P) 10.1 proteins. Moreover, DCPIB opened recombinant K(2P) 2.1 and K(2P) 10.1 expressed in heterologous system. In brain slices, DCPIB did not augment the large background K(+) conductance in hippocampal astrocytes, but caused an increment in basal K(+) current of neurons.
