The BACE1 product sAPPβ induces ER stress and inflammation and impairs insulin signaling

BACE1 产物 sAPPβ 会诱发内质网应激和炎症,并损害胰岛素信号

阅读:6
作者:Gaia Botteri, Laia Salvadó, Anna Gumà, D Lee Hamilton, Paul J Meakin, Gemma Montagut, Michael L J Ashford, Victoria Ceperuelo-Mallafré, Sonia Fernández-Veledo, Joan Vendrell, María Calderón-Dominguez, Dolors Serra, Laura Herrero, Javier Pizarro, Emma Barroso, Xavier Palomer, Manuel Vázquez-Carrera

Conclusions

Collectively, these findings indicate that the BACE1 product sAPPβ is a key determinant in ER stress, inflammation and insulin resistance in skeletal muscle and gluconeogenesis in liver.

Methods

Studies were conducted in mouse C2C12 myotubes, skeletal muscle from Bace1-/-mice and mice treated with sAPPβ and adipose tissue and plasma from obese and type 2 diabetic patients.

Objective

β-secretase/β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a key enzyme involved in Alzheimer's disease that has recently been implicated in insulin-independent glucose uptake in myotubes. However, it is presently unknown whether BACE1 and the product of its activity, soluble APPβ (sAPPβ), contribute to lipid-induced inflammation and insulin resistance in skeletal muscle cells. Materials/

Results

We show that BACE1 inhibition or knockdown attenuates palmitate-induced endoplasmic reticulum (ER) stress, inflammation, and insulin resistance and prevents the reduction in Peroxisome Proliferator-Activated Receptor γ Co-activator 1α (PGC-1α) and fatty acid oxidation caused by palmitate in myotubes. The effects of palmitate on ER stress, inflammation, insulin resistance, PGC-1α down-regulation, and fatty acid oxidation were mimicked by soluble APPβ in vitro. BACE1 expression was increased in subcutaneous adipose tissue of obese and type 2 diabetic patients and this was accompanied by a decrease in PGC-1α mRNA levels and by an increase in sAPPβ plasma levels of obese type 2 diabetic patients compared to obese non-diabetic subjects. Acute sAPPβ administration to mice reduced PGC-1α levels and increased inflammation in skeletal muscle and decreased insulin sensitivity. Conclusions: Collectively, these findings indicate that the BACE1 product sAPPβ is a key determinant in ER stress, inflammation and insulin resistance in skeletal muscle and gluconeogenesis in liver.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。