Caenorhabditis elegans Model Studies Show MPP+ Is a Simple Member of a Large Group of Related Potent Dopaminergic Toxins

秀丽隐杆线虫模型研究表明 MPP+ 是一大类相关强效多巴胺能毒素的简单成员

阅读:6
作者:David Murphy, Harshil Patel, Kandatege Wimalasena

Abstract

Although the causes of Parkinson's disease (PD) are not fully understood, the consensus is that a combination of genetic and environmental factors plays a major role. The discovery that the synthetic chemical, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-derived N-methyl-4-phenylpyridinium (MPP+), recapitulates major pathophysiological characteristics of PD in humans and other mammals has provided the strongest support for this possibility; however, several key aspects of the mechanism remain unclear. In contrast to the widely accepted view that MPP+ is structurally unique and optimal for selective dopaminergic toxicity, previous in vitro studies have suggested that MPP+ is most likely a simple member of a large group of related dopaminergic toxins. Here we provide first in vivo evidence to support the above possibility using Caenorhabditis elegans PD models. We also provide in vivo evidence to show that the inherent predisposition of dopaminergic neurons to produce high oxidative stress and related downstream effects when exposed to MPP+ and related mitochondrial toxins is responsible for their selective vulnerability to these toxins. More significantly, present findings suggest that if this broad group of MPP+ related dopaminergic toxins are present in work places or in the environment, they could cause far-reaching public health consequences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。