Engineering a Bi-Conical Microchip as Vascular Stenosis Model

设计双圆锥微芯片作为血管狭窄模型

阅读:5
作者:Yan Li, Jianchun Wang, Wei Wan, Chengmin Chen, Xueying Wang, Pei Zhao, Yanjin Hou, Hanmei Tian, Jianmei Wang, Krishnaswamy Nandakumar, Liqiu Wang

Abstract

Vascular stenosis is always associated with hemodynamic changes, especially shear stress alterations. Herein, bi-conical shaped microvessels were developed through flexibly and precisely controlled templated methods for hydrogel blood-vessel-like microchip. The blood-vessel-like microvessels demonstrated tunable dimensions, perfusable ability, and good cytocompatibility. The microchips showed blood-vessel-like lumens through fine embeddedness of human umbilical vein endothelial cells (HUVECs) on the interior surface of hydrogel microchannels, which closely reproduced the morphology and functions of human blood vessels. In the gradual narrowing region of bi-conical shape, fluid flow generated wall shear stress, which caused cell morphology variations. Wall shear rates at the gradual narrowing region were simulated by FLUENT software. The results showed that our microchannels qualified for performance as a vascular stenosis-like model in evaluating blood hydrodynamics. In general, our blood-vessel-on-a-chip could offer potential applications in the prevention, diagnosis, and therapy of arterial thrombosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。