Gastrodin promotes the regeneration of peripheral nerves by regulating miR-497/BDNF axis

天麻素通过调控miR-497/BDNF轴促进周围神经再生

阅读:8
作者:Li Yongguang, Wang Xiaowei, Yan Huichao, Zhang Yanxiang

Background

Gastrodin (GAS), is a kind of phenolic compound extracted from the traditional Chinese herbal medicine Gastrodia elata Blume (GEB). This study was aimed at probing into the protective effect of GAS on peripheral nerve injury (PNI) and the underlying mechanism.

Conclusions

GAS promotes the recovery of PNI via modulating miR-497 / BDNF axis and inhibiting oxidative stress.

Methods

A rat model with PNI was established, followed by intraperitoneal injection of GAS (20 mg/kg/day). Sciatic nerve function index (SFI) was used to analyze the function of sciatic nerve. The amplitude and latency of compound muscle action potential (CMAP) were examined by electrophysiology. Schwann cells (SCs) were isolated from fetal rats and treated with GAS 200 μg/mL, and H2O2-induced model of oxidative stress injury was established. EdU and Transwell assays were adopted to detect the viability and migration of SCs. Dual-luciferase reporter gene assays were applied to verify the binding site between miR-497 and brain-derived neurotrophic factor (BDNF) 3'UTR. MiR-497 expression was probed by quantitative real-time polymerase chain reaction (qRT-PCR). BDNF, neurofilament-200 (NF-200) and myelin basic protein (MBP) expression levels were detected by Western blotting. Malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, glutathione content (GSH) and catalase (CAT) activity in SCs were also measured.

Results

GAS treatment could significantly increase the SFI and amplitude of CMAP, shorten the refractory period, and ameliorate muscle atrophy of the rats with PNI. GAS treatment could markedly restrain miR-497 expression and increase the expression levels of BDNF, NF-200 and MBP in SCs. BDNF was confirmed as the target of miR-497 and BDNF overexpression could reverse the impacts of miR-497 overexpression on the proliferation, migration, and oxidative stress response of SCs. Conclusions: GAS promotes the recovery of PNI via modulating miR-497 / BDNF axis and inhibiting oxidative stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。