PIMT regulates hepatic gluconeogenesis in mice

PIMT 调节小鼠肝糖异生

阅读:10
作者:Bandish Kapadia, Soma Behera, Sireesh T Kumar, Tapan Shah, Rebecca Kristina Edwin, Phanithi Prakash Babu, Partha Chakrabarti, Kishore V L Parsa, Parimal Misra

Abstract

The physiological and metabolic functions of PIMT/TGS1, a third-generation transcriptional apparatus protein, in glucose homeostasis sustenance are unclear. Here, we observed that the expression of PIMT was upregulated in the livers of short-term fasted and obese mice. Lentiviruses expressing Tgs1-specific shRNA or cDNA were injected into wild-type mice. Gene expression, hepatic glucose output, glucose tolerance, and insulin sensitivity were evaluated in mice and primary hepatocytes. Genetic modulation of PIMT exerted a direct positive impact on the gluconeogenic gene expression program and hepatic glucose output. Molecular studies utilizing cultured cells, in vivo models, genetic manipulation, and PKA pharmacological inhibition establish that PKA regulates PIMT at post-transcriptional/translational and post-translational levels. PKA enhanced 3'UTR-mediated translation of TGS1 mRNA and phosphorylated PIMT at Ser656, increasing Ep300-mediated gluconeogenic transcriptional activity. The PKA-PIMT-Ep300 signaling module and associated PIMT regulation may serve as a key driver of gluconeogenesis, positioning PIMT as a critical hepatic glucose sensor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。