Sox9EGFP Defines Biliary Epithelial Heterogeneity Downstream of Yap Activity

Sox9EGFP 定义了 Yap 活性下游的胆管上皮异质性

阅读:1
作者:Deepthi Y Tulasi ,Diego Martinez Castaneda ,Kortney Wager ,Connor B Hogan ,Karel P Alcedo ,Jesse R Raab ,Adam D Gracz

Abstract

Background & aims: Defining the genetic heterogeneity of intrahepatic biliary epithelial cells (BECs) is challenging, and tools for identifying BEC subpopulations are limited. Here, we characterize the expression of a Sox9EGFP transgene in the liver and demonstrate that green fluorescent protein (GFP) expression levels are associated with distinct cell types. Methods: Sox9EGFP BAC transgenic mice were assayed by immunofluorescence, flow cytometry, and gene expression profiling to characterize in vivo characteristics of GFP populations. Single BECs from distinct GFP populations were isolated by fluorescence-activated cell sorting, and functional analysis was conducted in organoid forming assays. Intrahepatic ductal epithelium was grown as organoids and treated with a Yes-associated protein (Yap) inhibitor or bile acids to determine upstream regulation of Sox9 in BECs. Sox9EGFP mice were subjected to bile duct ligation, and GFP expression was assessed by immunofluorescence. Results: BECs express low or high levels of GFP, whereas periportal hepatocytes express sublow GFP. Sox9EGFP+ BECs are differentially distributed by duct size and demonstrate distinct gene expression signatures, with enrichment of Cyr61 and Hes1 in GFPhigh BECs. Single Sox9EGFP+ cells form organoids that exhibit heterogeneous survival, growth, and HNF4A activation dependent on culture conditions, suggesting that exogenous signaling impacts BEC heterogeneity. Yap is required to maintain Sox9 expression in biliary organoids, but bile acids are insufficient to induce BEC Yap activity or Sox9 in vivo and in vitro. Sox9EGFP remains restricted to BECs and periportal hepatocytes after bile duct ligation. Conclusions: Our data demonstrate that Sox9EGFP levels provide readout of Yap activity and delineate BEC heterogeneity, providing a tool for assaying subpopulation-specific cellular function in the liver.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。