RhoA as a Signaling Hub Controlling Glucagon Secretion From Pancreatic α-Cells

RhoA 作为信号枢纽控制胰腺 α 细胞分泌胰高血糖素

阅读:4
作者:Xue Wen Ng, Yong Hee Chung, Farzad Asadi, Chen Kong, Alessandro Ustione, David W Piston

Abstract

Glucagon hypersecretion from pancreatic islet α-cells exacerbates hyperglycemia in type 1 diabetes (T1D) and type 2 diabetes. Still, the underlying mechanistic pathways that regulate glucagon secretion remain controversial. Among the three complementary main mechanisms (intrinsic, paracrine, and juxtacrine) proposed to regulate glucagon release from α-cells, juxtacrine interactions are the least studied. It is known that tonic stimulation of α-cell EphA receptors by ephrin-A ligands (EphA forward signaling) inhibits glucagon secretion in mouse and human islets and restores glucose inhibition of glucagon secretion in sorted mouse α-cells, and these effects correlate with increased F-actin density. Here, we elucidate the downstream target of EphA signaling in α-cells. We demonstrate that RhoA, a Rho family GTPase, plays a key role in this pathway. Pharmacological inhibition of RhoA disrupts glucose inhibition of glucagon secretion in islets and decreases cortical F-actin density in dispersed α-cells and α-cells in intact islets. Quantitative FRET biosensor imaging shows that increased RhoA activity follows directly from EphA stimulation. We show that in addition to modulating F-actin density, EphA forward signaling and RhoA activity affect α-cell Ca2+ activity in a novel mechanistic pathway. Finally, we show that stimulating EphA forward signaling restores glucose inhibition of glucagon secretion from human T1D donor islets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。