CREB3L2-ATF4 heterodimerization defines a transcriptional hub of Alzheimer's disease gene expression linked to neuropathology

CREB3L2-ATF4 异二聚化定义了与神经病理学相关的阿尔茨海默病基因表达的转录中心

阅读:5
作者:Cláudio Gouveia Roque, Kyung Min Chung, Ethan P McCurdy, Radhika Jagannathan, Lisa K Randolph, Krystal Herline-Killian, Jimena Baleriola, Ulrich Hengst

Abstract

Gene expression is changed by disease, but how these molecular responses arise and contribute to pathophysiology remains less understood. We discover that β-amyloid, a trigger of Alzheimer's disease (AD), promotes the formation of pathological CREB3L2-ATF4 transcription factor heterodimers in neurons. Through a multilevel approach based on AD datasets and a novel chemogenetic method that resolves the genomic binding profile of dimeric transcription factors (ChIPmera), we find that CREB3L2-ATF4 activates a transcription network that interacts with roughly half of the genes differentially expressed in AD, including subsets associated with β-amyloid and tau neuropathologies. CREB3L2-ATF4 activation drives tau hyperphosphorylation and secretion in neurons, in addition to misregulating the retromer, an endosomal complex linked to AD pathogenesis. We further provide evidence for increased heterodimer signaling in AD brain and identify dovitinib as a candidate molecule for normalizing β-amyloid-mediated transcriptional responses. The findings overall reveal differential transcription factor dimerization as a mechanism linking disease stimuli to the development of pathogenic cellular states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。