CVD Conditions for MWCNTs Production and Their Effects on the Optical and Electrical Properties of PPy/MWCNTs, PANI/MWCNTs Nanocomposites by In Situ Electropolymerization

CVD 制备 MWCNTs 的条件及其对原位电聚合制备 PPy/MWCNTs、PANI/MWCNTs 纳米复合材料光电性能的影响

阅读:5
作者:Silvia Beatriz Brachetti-Sibaja, Diana Palma-Ramírez, Aidé Minerva Torres-Huerta, Miguel Antonio Domínguez-Crespo, Héctor Javier Dorantes-Rosales, Adela Eugenia Rodríguez-Salazar, Esther Ramírez-Meneses

Abstract

In this work, the optimal conditions of synthesizing and purifying carbon nanotubes (CNTs) from ferrocene were selected at the first stage, where decomposition time, argon fluxes, precursor amounts, decomposition temperature (at 1023 K and 1123 K), and purification process (HNO3 + H2SO4 or HCl + H2O2), were modulated through chemical vapor deposition (CVD) and compared to commercial CNTs. The processing temperature at 1123 K and the treatment with HCl + H2O2 were key parameters influencing the purity, crystallinity, stability, and optical/electrical properties of bamboo-like morphology CNTs. Selected multiwalled CNTs (MWCNTs), from 1 to 20 wt%, were electropolymerized through in-situ polarization with conductive polymers (CPs), poly(aniline) (PANI) and poly(pyrrole) (PPy), for obtaining composites. In terms of structural stability and electrical properties, MWCNTs obtained by CVD were found to be better than commercial ones for producing CPs composites. The CNTs addition in both polymeric matrixes was of 6.5 wt%. In both systems, crystallinity degree, related to the alignment of PC chains on MWCNTs surface, was improved. Electrical conductivity, in terms of the carrier density and mobility, was adequately enhanced with CVD CNTs, which were even better than the evaluated commercial CNTs. The findings of this study demonstrate that synergistic effects among the hydrogen bonds, stability, and conductivity are better in PANI/MWCNTs than in PPy/MWCNTs composites, which open a promissory route to prepare materials for different technological applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。