Severe growth deficiency is associated with STAT5b mutations that disrupt protein folding and activity

严重生长缺陷与 STAT5b 突变有关,这种突变会破坏蛋白质折叠和活性

阅读:5
作者:Benjamin Varco-Merth, Eva Feigerlová, Ujwal Shinde, Ron G Rosenfeld, Vivian Hwa, Peter Rotwein

Abstract

The first genetic defect in human signal transducer and activator of transcription (STAT)5b was identified in an individual with profound short stature and GH insensitivity, immune dysfunction, and severe pulmonary disease, and was caused by an alanine to proline substitution (A630P) within the Src homology-2 (SH2) domain. STAT5b(A630P) was found to be an inactive transcription factor based on its aberrant folding, diminished solubility, and propensity for aggregation triggered by its misfolded SH2 domain. Here we have characterized the second human STAT5b amino acid substitution mutation in an individual with similar pathophysiological features. This single nucleotide transition, predicted to change phenyalanine 646 to serine (F646S), also maps to the SH2 domain. Like STAT5b(A630P), STAT5b(F646S) is prone to aggregation, as evidenced by its detection in the insoluble fraction of cell extracts, the presence of dimers and higher-order oligomers in the soluble fraction, and formation of insoluble cytoplasmic inclusion bodies in cells. Unlike STAT5b(A630P), which showed minimal GH-induced tyrosine phosphorylation and no transcriptional activity, STAT5b(F646S) became tyrosine phosphorylated after GH treatment and could function as a GH-activated transcription factor, although to a substantially lesser extent than STAT5b(WT). Biochemical characterization demonstrated that the isolated SH2 domain containing the F646S substitution closely resembled the wild-type SH2 domain in secondary structure, but exhibited reduced thermodynamic stability and altered tertiary structure that were intermediate between STAT5b(A630P) and STAT5b(WT). Homology-based structural modeling suggests that the F646S mutation disrupts key hydrophobic interactions and may also distort the phosphopeptide-binding face of the SH2 domain, explaining both the reduced thermodynamic stability and impaired biological activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。