Exposure of the Gestating Mother to Sympathetic Stress Modifies the Cardiovascular Function of the Progeny in Male Rats

妊娠期母亲暴露于交感神经应激会改变雄性大鼠后代的心血管功能

阅读:5
作者:Beatriz Piquer, Diandra Olmos, Andrea Flores, Rafael Barra, Gabriela Bahamondes, Guillermo Diaz-Araya, Hernan E Lara

Background

Sympathetic stress stimulates norepinephrine (NE) release from sympathetic nerves. During pregnancy, it modifies the fetal environment, increases NE to the fetus through the placental NE transporter, and affects adult physiological functions. Gestating rats were exposed to stress, and then the heart function and sensitivity to in vivo adrenergic stimulation were studied in male progeny.

Conclusion

These data suggest permanent changes to the heart's adrenergic response after rat progeny were stressed in the uterus.

Methods

Pregnant Sprague-Dawley rats were exposed to cold stress (4 °C/3 h/day); rats' male progeny were euthanized at 20 and 60 days old, and their hearts were used to determine the β-adrenergic receptor (βAR) (radioligand binding) and NE concentration. The in vivo arterial pressure response to isoproterenol (ISO, 1 mg/kg weight/day/10 days) was monitored in real time (microchip in the descending aorta).

Results

Stressed male progeny presented no differences in ventricular weight, the cardiac NE was lower, and high corticosterone plasma levels were recorded at 20 and 60 days old. The relative abundance of β1 adrenergic receptors decreased by 36% and 45%, respectively (p < 0.01), determined by Western blot analysis without changes in β2 adrenergic receptors. A decrease in the ratio between β1/β2 receptors was found. Displacement of 3H-dihydroalprenolol (DHA) from a membrane fraction with propranolol (β antagonist), atenolol (β1 antagonist), or zinterol (β2 agonist) shows decreased affinity but no changes in the β-adrenergic receptor number. In vivo exposure to ISO to induce a β-adrenergic overload provoked death in 50% of stressed males by day 3 of ISO treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。