Atf7ip Inhibits Osteoblast Differentiation via Negative Regulation of the Sp7 Transcription Factor

Atf7ip 通过负向调控 Sp7 转录因子抑制成骨细胞分化

阅读:6
作者:Guoqin Hu, Xian Shi, Xiuxia Qu, Chunqing Han, Anran Hu, Zhongtang Jia, Jiatao Yang, Huanliang Liu, Yu Wu

Abstract

Epigenetic modifications are critical for cell differentiation and growth. As a regulator of H3K9 methylation, Setdb1 is implicated in osteoblast proliferation and differentiation. The activity and nucleus localization of Setdb1 are regulated by its binding partner, Atf7ip. However, whether Atf7ip is involved in the regulation of osteoblast differentiation remains largely unclear. In the present study, we found that Atf7ip expression was upregulated during the osteogenesis of primary bone marrow stromal cells and MC3T3-E1 cells, and was induced in PTH-treated cells. The overexpression of Atf7ip impaired osteoblast differentiation in MC3T3-E1 cells regardless of PTH treatment, as measured by the expression of osteoblast differentiation markers, Alp-positive cells, Alp activity, and calcium deposition. Conversely, the depletion of Atf7ip in MC3T3-E1 cells promoted osteoblast differentiation. Compared with the control mice, animals with Atf7ip deletion in the osteoblasts (Oc-Cre;Atf7ipf/f) showed more bone formation and a significant increase in the bone trabeculae microarchitecture, as reflected by μ-CT and bone histomorphometry. Mechanistically, Atf7ip contributed to the nucleus localization of Setdb1 in MC3T3-E1, but did not affect Setdb1 expression. Atf7ip negatively regulated Sp7 expression, and through specific siRNA, Sp7 knockdown attenuated the enhancing role of Atf7ip deletion in osteoblast differentiation. Through these data, we identified Atf7ip as a novel negative regulator of osteogenesis, possibly via its epigenetic regulation of Sp7 expression, and demonstrated that Atf7ip inhibition is a potential therapeutic measure for enhancing bone formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。