Unbiased yeast screens identify cellular pathways affected in Niemann-Pick disease type C

无偏酵母筛选鉴定出受 C 型尼曼匹克病影响的细胞通路

阅读:7
作者:Alexandria Colaco, María E Fernández-Suárez, Dawn Shepherd, Lihi Gal, Chen Bibi, Silvia Chuartzman, Alan Diot, Karl Morten, Emily Eden, Forbes D Porter, Joanna Poulton, Nick Platt, Maya Schuldiner, Frances M Platt

Abstract

Niemann-Pick disease type C (NPC) is a rare lysosomal storage disease caused by mutations in either the NPC1 or NPC2 genes. Mutations in the NPC1 gene lead to the majority of clinical cases (95%); however, the function of NPC1 remains unknown. To gain further insights into the biology of NPC1, we took advantage of the homology between the human NPC1 protein and its yeast orthologue, Niemann-Pick C-related protein 1 (Ncr1). We recreated the NCR1 mutant in yeast and performed screens to identify compensatory or redundant pathways that may be involved in NPC pathology, as well as proteins that were mislocalized in NCR1-deficient yeast. We also identified binding partners of the yeast Ncr1 orthologue. These screens identified several processes and pathways that may contribute to NPC pathogenesis. These included alterations in mitochondrial function, cytoskeleton organization, metal ion homeostasis, lipid trafficking, calcium signalling, and nutrient sensing. The mitochondrial and cytoskeletal abnormalities were validated in patient cells carrying mutations in NPC1, confirming their dysfunction in NPC disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。