The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice

Apium graveolens L.的抗氧化和神经化学活性及其对小鼠MPTP诱导的帕金森样症状的改善作用

阅读:4
作者:Pennapa Chonpathompikunlert, Phetcharat Boonruamkaew, Wanida Sukketsiri, Pilaiwanwadee Hutamekalin, Morakot Sroyraya

Background

Apium graveolens L. is a traditional Chinese medicine prescribed as a treatment for hypertension, gout, and diabetes. This study aimed to determine the neuroprotective effects of A. graveolens extract against a Parkinson's disease (PD) model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6 mice.

Conclusions

We speculated that A. graveolens ameliorated behavioral performance by mediating neuroprotection against MPTP-induced PD via antioxidant effects, related neurotransmitter pathways and an increase in the number of dopaminergic neurons.

Methods

Male C57BL/6 mice treated with MPTP were orally dosed with A. graveolens extract daily for 21 days. Behavioral tests, including a rotarod apparatus, a narrow beam test, a drag test, a grid walk test, a swimming test, and a resting tremor evaluation, were performed. Thereafter, the mice were sacrificed, and monoamine oxidase A and B activity, lipid peroxidation activity, and superoxide anion levels were measured. Immunohistochemical staining of tyrosine hydroxylase was performed to identify dopaminergic neurons.

Results

We found that treatment with A. graveolens at dose of 375 mg/kg demonstrated the highest effect and led to significant improvements in behavioral performance, oxidative stress parameters, and monoamine oxidase A and B activity compared with the untreated group (p < 0.05). Moreover, the extract increased the number of neurons immunopositive for tyrosine hydroxylase expression compared with MPTP alone or MPTP with a positive control drug (p < 0.05). Conclusions: We speculated that A. graveolens ameliorated behavioral performance by mediating neuroprotection against MPTP-induced PD via antioxidant effects, related neurotransmitter pathways and an increase in the number of dopaminergic neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。