Accurate control of dual-receptor-engineered T cell activity through a bifunctional anti-angiogenic peptide

通过双功能抗血管生成肽精确控制双受体工程 T 细胞活性

阅读:5
作者:Erhao Zhang, Jieyi Gu, Jianpeng Xue, Chenyu Lin, Chen Liu, Mengwei Li, Jingchao Hao, Sarra Setrerrahmane, Xiaowei Chi, Weiyan Qi, Jialiang Hu, Hanmei Xu

Background

Chimeric antigen receptors (CARs) presented on T cell surfaces enable redirection of T cell specificity, which has enormous promise in antitumor therapy. However, excessive activity and poor control over such engineered T cells cause significant safety challenges, such as cytokine release syndrome and organ toxicities. To enhance the specificity and controllable activity of CAR-T cells, we report a novel switchable dual-receptor CAR-engineered T (sdCAR-T) cell and a new switch molecule of FITC-HM-3 bifunctional molecule (FHBM) in this study.

Conclusions

Our data indicate that FHBM can accurately control timing and dose of injected CAR-T cells, and sdCAR-T cells exert significant antitumor activity while releasing lower levels of cytokines for the cognate tumor cells expressing both MSLN and integrin αvβ3. Therefore, combination therapies using sdCAR-T cells and the switch molecule FHBM have significant potential to treat malignancies.

Methods

We designed a fusion molecule comprising FITC and HM-3. HM-3, an antitumor peptide including an Arg-Gly-Asp sequence, can specifically target integrin αvβ3 that is presented on some tumor cells. Moreover, to improve the specificity of CAR-T cells, we also generated the sdCAR-T cell line against cognate tumor cells expressing human mesothelin (MSLN) and integrin αvβ3. Finally, the activity of sdCAR-T cell and FHBM is verified via in vitro and in vivo experiments.

Results

In the presence of FHBM, the designed sdCAR-T cells exerted high activity including activation and proliferation and had specific cytotoxicity in a time- and dose-dependent manner in vitro. Furthermore, using a combination of FHBM in nude mice, sdCAR-T cells significantly inhibited the growth of MSLN+ K562 cells and released lower levels of the cytokines (e.g., interleukin-2, interferon γ, interleukin-6, and tumor necrosis factor α) relative to conventional CAR-T cells, obtaining specific, controllable, and enhanced cytotoxicity. Conclusions: Our data indicate that FHBM can accurately control timing and dose of injected CAR-T cells, and sdCAR-T cells exert significant antitumor activity while releasing lower levels of cytokines for the cognate tumor cells expressing both MSLN and integrin αvβ3. Therefore, combination therapies using sdCAR-T cells and the switch molecule FHBM have significant potential to treat malignancies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。