Targeting β-catenin dependent Wnt signaling via peptidomimetic inhibitors in murine chondrocytes and OA cartilage

通过肽模拟抑制剂靶向小鼠软骨细胞和 OA 软骨中的 β-catenin 依赖性 Wnt 信号传导

阅读:4
作者:A Held, A Glas, L Dietrich, M Bollmann, K Brandstädter, T N Grossmann, C H Lohmann, T Pap, J Bertrand

Conclusion

These data indicate that blockade of canonical Wnt signaling might be a therapeutic strategy to treat early OA cases and protect further cartilage degradation by preventing chondrocyte hypertrophic differentiation.

Methods

Primary neonatal murine chondrocytes and cartilage explants from OA patients undergoing total joint replacement for knee OA, were used for microscopy to determine matrix and cell penetrating capacity of fluorescein isothiocyanate FITC-tagged SAH-Bcl9 and StAx-35R peptides. T cell factor/lymphoid enhancer-binding factor (TCF/LEF) reporter assays were used to monitor the inhibition of Wnt3a induced β-catenin signaling by each peptide. Changes in chondrocyte phenotypic marker gene expression were analyzed by qRT PCR.

Objective

The canonical Wnt signaling pathway has been shown to be involved in regulating chondrocyte hypertrophic differentiation during Osteoarthritis (OA). The aim of this study was to test the therapeutic potential of two stapled peptide canonical Wnt inhibitors - SAH-Bcl9 and StAx-35R - in preventing Wnt induced cartilage changes in OA.

Results

Both peptides localized intercellular in primary murine chondrocytes and cartilage explants. They inhibited Wnt3a induced TCF/LEF promoter activity in primary murine chondrocytes. Both inhibitors did not rescue Wnt3a altered expression of chondrocyte phenotypic genes (Sox9, Col2a1, Acan) and hypertrophy marker gene (Col10a1) at high doses (100 ng/ml). Upon application of 10 ng/ml Wnt3a, StAx-35R partially reversed the Wnt effect on Sox9 and Col2a1 gene expression. Both peptides, however, reversed the downregulation of SOX9 and aggrecan (ACAN), and decrease of COL10A1 gene expression in preserved human OA cartilage explants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。