scRank infers drug-responsive cell types from untreated scRNA-seq data using a target-perturbed gene regulatory network

scRank 使用靶标扰动基因调控网络,从未处理的 scRNA-seq 数据中推断出对药物有反应的细胞类型

阅读:6
作者:Chengyu Li, Xin Shao, Shujing Zhang, Yingchao Wang, Kaiyu Jin, Penghui Yang, Xiaoyan Lu, Xiaohui Fan, Yi Wang

Abstract

Cells respond divergently to drugs due to the heterogeneity among cell populations. Thus, it is crucial to identify drug-responsive cell populations in order to accurately elucidate the mechanism of drug action, which is still a great challenge. Here, we address this problem with scRank, which employs a target-perturbed gene regulatory network to rank drug-responsive cell populations via in silico drug perturbations using untreated single-cell transcriptomic data. We benchmark scRank on simulated and real datasets, which shows the superior performance of scRank over existing methods. When applied to medulloblastoma and major depressive disorder datasets, scRank identifies drug-responsive cell types that are consistent with the literature. Moreover, scRank accurately uncovers the macrophage subpopulation responsive to tanshinone IIA and its potential targets in myocardial infarction, with experimental validation. In conclusion, scRank enables the inference of drug-responsive cell types using untreated single-cell data, thus providing insights into the cellular-level impacts of therapeutic interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。