FGF-induced LHX9 regulates the progression and metastasis of osteosarcoma via FRS2/TGF-β/β-catenin pathway

FGF诱导的LHX9通过FRS2/TGF-β/β-catenin通路调控骨肉瘤的进展和转移

阅读:6
作者:Shuang-Qing Li, Chao Tu, Lu Wan, Rui-Qi Chen, Zhi-Xi Duan, Xiao-Lei Ren, Zhi-Hong Li

Background

Fibroblast growth factor (FGF) and tumor growth factor-β (TGFβ) have emerged as pivotal regulators during the progression of osteosarcoma (OS). LHX9 is one crucial transcription factor controlled by FGF, however, its function in OS has not been investigated yet.

Conclusions

This study revealed LHX9 was essential for the proliferation, migration, invasion, and metastasis of OS cells via FGF and TGF-β/β-catenin signaling pathways.

Methods

The expression of LHX9, FRS2, BMP4, TGF-beta R1, SMAD2, beta-catenin and metastasis-related proteins was measured by real-time quantitative PCR (RT-qPCR) and Western blot. CCK-8 assay and colony formation assay were employed to determine the proliferation of OS cells, while scratch wound healing assay and transwell assay were used to evaluate their migration and invasion, respectively. In vivo tumor growth and metastasis were determined by subcutaneous or intravenous injection of OS cells into nude mice.

Results

LHX9 expression was evidently up-regulated in OS tumor tissues and cell lines. Knockdown of LHX9 impaired the proliferation, migration, invasion and metastasis of OS cells. Mechanistically, LHX9 silencing led to the down-regulation of BMP-4, β-catenin and metastasis-related proteins, which was also observed in beta-catenin knockdown OS cells. By contrast, FRS2 knockdown conduced to the up-regulation of LHX9, BMP4, β-catenin and TGF-βR1, while TGF-beta inhibition repressed the expression of LHX9 and metastasis-related proteins. Additionally, let-7c modulates LHX9 and metastasis-related proteins by suppressing TGF-beta R1 expression on transcriptional level. Conclusions: This study revealed LHX9 was essential for the proliferation, migration, invasion, and metastasis of OS cells via FGF and TGF-β/β-catenin signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。