Nuclear receptor agonists improve insulin responsiveness in cultured cardiomyocytes through enhanced signaling and preserved cytoskeletal architecture

核受体激动剂通过增强信号传导和保留细胞骨架结构来改善培养心肌细胞的胰岛素反应

阅读:5
作者:Christophe Montessuit, Irène Papageorgiou, René Lerch

Abstract

Insulin resistance is the failure of insulin to stimulate the transport of glucose into its target cells. A highly regulatable supply of glucose is important for cardiomyocytes to cope with situations of metabolic stress. We recently observed that isolated adult rat cardiomyocytes become insulin resistant in vitro. Insulin resistance is combated at the whole body level with agonists of the nuclear receptor complex peroxisome proliferator-activated receptor gamma (PPARgamma)/retinoid X receptor (RXR). We investigated the effects of PPARgamma/RXR agonists on the insulin-stimulated glucose transport and on insulin signaling in insulin-resistant adult rat cardiomyocytes. Treatment of cardiomyocytes with ciglitazone, a PPARgamma agonist, or 9-cis retinoic acid (RA), a RXR agonist, increased insulin- and metabolic stress-stimulated glucose transport, whereas agonists of PPARalpha or PPARbeta/delta had no effect. Stimulation of glucose transport in response to insulin requires the phosphorylation of the signaling intermediate Akt on the residues Thr308 and Ser473 and, downstream of Akt, AS160 on several Thr and Ser residues. Phosphorylation of Akt and AS160 in response to insulin was lower in insulin-resistant cardiomyocytes. However, treatment with 9-cis RA markedly increased phosphorylation of both proteins. Treatment with 9-cis RA also led to better preservation of microtubules in cultured cardiomyocytes. Disruption of microtubules in insulin-responsive cardiomyocytes abolished insulin-stimulated glucose transport and reduced phosphorylation of AS160 but not Akt. Metabolic stress-stimulated glucose transport also involved AS160 phosphorylation in a microtubule-dependent manner. Thus, the stimulation of glucose uptake in response to insulin or metabolic stress is dependent in cardiomyocytes on the presence of intact microtubules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。