EPAC1 promotes adaptive responses in human arterial endothelial cells subjected to low levels of laminar fluid shear stress: Implications in flow-related endothelial dysfunction

EPAC1 促进人类动脉内皮细胞在低水平层流剪切应力下的适应性反应:与流动相关的内皮功能障碍有关

阅读:5
作者:Sarah N Rampersad, Silja I Freitag, Fabien Hubert, Paulina Brzezinska, Nathalie Butler, M Bibiana Umana, Alie R Wudwud, Donald H Maurice

Abstract

Blood flow-associated fluid shear stress (FSS) dynamically regulates the endothelium's ability to control arterial structure and function. While arterial endothelial cells (AEC) subjected to high levels of laminar FSS express a phenotype resistant to vascular insults, those exposed to low levels of laminar FSS, or to the FSS associated with oscillatory blood flow, are less resilient. Despite numerous reports highlighting how the cAMP-signaling system controls proliferation, migration and permeability of human AECs (HAECs), its role in coordinating HAEC responses to FSS has received scant attention. Herein we show that the cAMP effector EPAC1 is required for HAECs to align and elongate in the direction of flow, and for the induction of several anti-atherogenic and anti-thrombotic genes associated with these events. Of potential therapeutic importance, EPAC1 is shown to play a dominant role the in response of HAECs to low levels of laminar FSS, such as would be found within atherosclerosis-prone areas of the vasculature. Moreover, we show that EPAC1 promotes these HAEC responses to flow by regulating Vascular Endothelial Growth Factor Receptor-2 and Akt activation, within a VE-cadherin (VECAD)/PECAM1-based mechanosensor. We submit that these findings are consistent with the novel proposition that promoting EPAC1-signaling represents a novel means through which to promote expression of an adaptive phenotype in HAECs exposed to non-adaptive FSS-encoded signals as a consequence of vascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。